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Synchronization of chaos in coupled systems
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The stability of synchronous chaos of coupled oscillators with diffusive and gradient couplings is investi-
gated. The stability boundaries of all transverse modes can be simultaneously drawn by justifying the boundary
of a single mode, according to a scaling relation. Therefore, the distribution of stable and unstable regions can
be explicitly shown in control parameter space. Bifurcations through different unstable modes, leading to
different spatial orders, are analyzed.

PACS number~s!: 05.45.2a
tic
in
le

-

a
li
o

ing
he
ur
ns
s
,

f

n
h

ha
ifo

a-
be

tia

nd
n-
le

so,
gion
f all

er
the
in

ate
ma-
r
te
-
ov

f

r

m

in
Recently, chaos synchronization has become a topic
great interest, due to its theoretical significance and prac
applications@1–15#. There have been some theories deal
with the stability of synchronous chaotic states in coup
systems, like methods of master stability functions@11# and
eigenvalue analysis@12,13#. However, they are all repre
sented in the space of Re(l) and Im(l), with l being the
eigenvalues of coupling matrix, and not explicitly shown in
control parameter space. In this paper, we extend the sca
relation of Ref.@6#, and investigate chaos synchronization
coupled systems directly in diffusive and gradient coupl
parameter space, which is physically meaningful, and t
the conditions and classifications for various types of bif
cations can be identified for well defined physical situatio

We considerN identical coupled nonlinear oscillator
with nearest couplings and periodic boundary conditions

u~ j̇ !5 f „u~ j !…1~e1r !G„u~ j 11!2u~ j !…1~e2r !

3G„u~ j 21!2u~ j !…,
~1!

j 51,2, . . . ,N,

whereu( j )PRn, the functionf is nonlinear and capable o
exhibiting chaotic solutions,e and r are scalar diffusive and
gradient coupling parameters, respectively, andG is a n3n
constant matrix linking coupled variables. Such equatio
could represent a discrete reaction-diffusion equation witn
species.

We are interested in bifurcations from synchronous c
otic states; these states reside on a synchronization man
defined by M5$u(1)5u(2)5 . . . 5u(N)5s(t)%, where
the chaotic solutions(t) satisfies the single oscillator equ
tion s( ṫ)5 f (s). Stability of the synchronous state can
determined by linearizing Eq.~1! abouts(t). From the spa-
tial Fourier transformation we can get the equation of spa
Fourier modes@6,13#

ḣk5~D f ~s!1@Re~l!1 i Im~l!#G!hk , ~2a!
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Re~l!524e sin2~pk/N!, Im~l!522r sin~2pk/N!,
~2b!

k50,1, . . . ,N21,

whereD f (s) is the Jacobian off on s(t). Therefore thek
50 mode governs motion on the synchronized manifold a
k51, . . . ,N21 modes determine the stability of the sy
chronous state. If all theseN21 transverse modes are stab
~i.e., corresponding to negative Lyapunov exponents!, we
can find the stable synchronous state, and we cannot do
otherwise. Therefore, the stable synchronous chaotic re
should be found in the overlap set of the stable regions o
these transverse modes.

In Ref. @13# some of the authors of the present pap
analyzed the stable and unstable regions in
Re(l) –Im(l) space, from which the bifurcation boundary
physically meaningful control parameter space~such as in
e2r space! is not clear, because with this method separ
comparisons between all the eigenvalues of the coupling
trix with the distribution of the stability region is needed fo
determining the stability. In order to conveniently indica
the stability condition ine2r space, let us study the struc
ture of Eqs.~2!. We define the largest transverse Lyapun
exponent~TLE! for the kth mode ofN-particle system in
Eqs. ~2! as lN

k , which determines the stability boundary o
this mode bylN

k 50. The structure of Eq.~2b! gives a func-
tion relation between the TLE’s for different mode numbek
and different system sizeN. In particular, for a given cou-
pling matrixG, the TLE’s of all modes can be obtained fro
the TLE as a single mode. Let us consider a mode ofk51
mode forN54, where we have

Re~l!522e, Im~l!522r . ~3!

In this case, we can modify Eq.~2a! to

ḣ15„D f ~s!2~2e12r !G…h1 ~N54!. ~4!

Then the stability analysis for this mode is directly shown
the physical parametere2r space. The main point of this
paper is we can numerically compute Eq.~4! for determining
the stability region of modek51 ~alsok5N21) for N54,
then the stability boundaries for all other modeskÞ0 can be
drawn accordingly by applying the identities
2963 ©2000 The American Physical Society
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lN
k ~e,r !5l4

1
„2e sin2~pk/N!,r sin~2pk/N!…. ~5!

This implies a simple scaling transformation of the stabil
region ofl4

1 in bothe andr axes, which is a direct extensio
of Eq. ~4! in Ref. @6#.

Numerical computation can be conducted as follow
First, from Eq.~4! we can get the critical curve identifyin
the stable region in thee2r plane for thek51 mode of the
N54 system, that is, the largest TLE of this mode cros
zero at the critical line, which can be done only numerica
Then we can obtain critical curves for all other modes a
for arbitrary N by applying the scaling transformation, E
~5!, for both abscissa and ordinate of the (e,r ) space. For
stabilizing the synchronous chaotic state, we should req
all transverse modes (kÞ0) to be stable, therefore in th
(e,r ) space the region of stable synchronous chaos co
sponds to the overlap set of the stable regions of all tra
verse modes.

To show the above analysis we take the coupled Lor
oscillators as our example, where the extension to other g
eral coupled systems is straightforward. The single Lor
system reads

ẋ5s~y2x!,

ẏ5rx2y2xz, ~6!

ż5xy2bz,

wheres510, b51.0, andr528.0, at these parameters th
motion is chaotic. We use Eq.~6! as the local dynamics o
the coupled system, Eq.~1!, and consider different linking
matrix G ’s.

In Figs. 1~a!, 1~b!, and 1~c! we show three kinds of criti-
cal curves of types I, II, and III for thek51 mode ofN
54 in the (e,r ) space for the linking matrices

G5S 0 0 0

1 0 0

0 0 0
D , S 0 0 0

0 1 0

0 0 0
D ,

and

S 0 1 0

0 0 0

0 0 0
D ,

respectively. The critical lines are justified by numerica
computing the linear equations~4! for zero largest Lyapunov
exponent, and the words ‘‘Unstable’’ and ‘‘Stable’’ indica
unstable and stable regions of this mode, respectively.

In Figs. 2–4 we predict the stable regions for differenk
and N by applying the scaling relation of Eq.~5! and by
considering the stable regions of Figs. 1~a!–1~c!, respec-
tively. The overlaps of all those stable regions are just
regions for the stable synchronous chaotic state, indicate
dotted regions.

From Figs. 2–4 the instability condition, bifurcatio
modes, and the different bifurcation features for the th
kinds of instability distributions become apparent. First,
:
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may ask can we stabilize the synchronous chaos for s
ciently large systemN@1 by varying the diffusive and gra
dient couplingseandr? The answer is: for type I distribution
@Figs. 1~a! and 2#, we can do so by increasing the diffusiv
coupling e, then the stable region always appears for sm
gradient couplingr; for type II distribution @Figs. 1~b! and
3#, we can also do so by increasinge, while the stable re-
gions appear for both small and larger ~or for any r if e is
larger than a certain value!; however, for type III distribution
@Figs. 1~c! and 4#, there is a critical system sizeNc , above
which the synchronous chaos cannot be stabilized whateve
andr. For instance, in the case of Fig. 4, no stable synch
nization can be found in anye2r region forN.5, because
the overlap set of the stable regions of transverse mode
empty.

Second, for type I distribution the stable synchrono
chaos can be destabilized only by long wave mode (k51)
for any N ~Fig. 2!; while for both types II and III distribu-
tions the homogeneous state can be desynchronized by
long wave (k51) and short wave@k5N/2 if N is even
number, ork5(N21)/2 if N is odd one# instabilities~Figs. 3
and 4!.

The most significant point is that Figs. 2 –4 predict n
only the bifurcation parameters, but also the spatiotemp
features of the motion after the instability of the synchrono
chaos. In Ref.@13#, Hu, Yang, and Liu found a Hopf bifur-
cation from chaos for the type I distribution, i.e., an oscil
tion with typical frequency can be associated with the des

FIG. 1. ~a!, ~b!, ~c!. The three kinds of type I, II, and III critical
curves of system, Eq.~1! with local dynamics, Eq.~5!, for N54
and k51 mode, plotted in the (e,r ) space.s510, b51.0, r
528.0 ~which will be used for all the following figures!.

~a! G5S 0 0 0

1 0 0

0 0 0
D ; ~b! G5S 0 0 0

0 1 0

0 0 0
D ,

and ~c!

G5S 0 1 0

0 0 0

0 0 0
D .
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chronization element after the instability of the synchrono
chaos. In Figs. 2 and 3 we find this kind of bifurcation exi
rather generally~see the arrows indicated by H!, where two
modes (k and N2k for kÞN/2) turn to be unstable simul
taneously. In Ref.@6#, Heagy, Pecora, and Carroll revealed
kind of short wave bifurcation, which can be easily found
Figs. 3 and 4~see the arrows indicated by S!.

In this paper, we focus on short wave bifurcation. In Fig

FIG. 2.

G5S 0 0 0

1 0 0

0 0 0
D .

The stable regions for different system size and different transv
modes. The overlap of stable regions of all transverse modes i
region of stable synchronous state, denoted by dotted regions
crossing the instability boundary through arrow H, we can obse
Hopf bifurcation from synchronous chaos.

FIG. 3. The same as Fig. 2 withG replaced by

G5S 0 0 0

0 1 0

0 0 0
D .

By crossing the instability boundary through arrows H and S
can observe Hopf bifurcation and short wave bifurcation from s
chronous chaos, respectively.
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FIG. 4. The same as Fig. 2 withG replaced by

G5S 0 1 0

0 0 0

0 0 0
D .

FIG. 5. The spatial order after short wave bifurcation.

G5S 0 0 0

0 1 0

0 0 0
D ,

e50.3, r 514.0@see the square open point in Fig. 3~d!#. The system
state has the following characteristic:x1(t)5x3(t)5x5(t)5a(t),
x2(t)5x4(t)5x6(t)5b(t). Thus we haveababab spatial order:
~a! DX1,2 vs t; ~b! DXj , j 12( j 51,2,3,4) vst.
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3 and 4, when we cross the instability boundaries by follo
ing the arrows S, a single modek5N/2 can become un
stable, indicating short wave instability. In Ref.@6# Heagy,
Pecora, and Carroll addressed this type of instability a
found periodic oscillations with smallest spatial scale af
short wave bifurcation. In our cases, we find chaotic mot
with smallest spatial scale, i.e., short wave bifurcation
tween two different chaotic states. This phenomenon is
garded as new and significant. Now let us consider the s
variation along the arrow S in Fig. 3~d!. In the dotted region,
synchronous chaos is stable. After crossing the instab
boundary through arrow S we examine the system stat
e50.3, r 514.0~indicated by a square!. We find an interest-
ing state: all oscillators perform chaotic motions, and the
oscillators form two groups:x1(t)5x3(t)5x5(t) ~statea)
andx2(t)5x4(t)5x6(t) ~stateb), the motion shows on–of
intermittency between these two groupsa andb. In Fig. 5~a!
we plotDX1,2 vs t, and observe typical on–off intermittency
in Fig. 5~b! we presentDXj , j 12( j 51,2,3,4) vst, which is
identically equal to zero, indicating synchronization. The
fore, as the synchronous chaos is desynchronized with
stable modek5N/2, we find the partially synchronized cha
ni
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otic state in the form ofababab. This smallest spatial scal
reasonably corresponds to the short wave instab
(abababstructure indicates three spatial periods, indicat
k53 for N56).

In summary, we have investigated the chaos synchron
tion problem of coupled chaotic oscillators with both diffu
sive and gradient couplings. By applying the scaling relati
Eq. ~5!, we are able to draw instability boundaries for a
transverse modes from that of a single mode. Thus the
tribution of stable and unstable regions of the synchron
chaos can be explicitly shown in the physically meaning
control parameter space. From this distribution the instab
ties for different modes can be predicted, and the spa
orders after different mode bifurcations, in particular, Ho
bifurcation and short wave bifurcation from synchrono
chaos, can be classified.
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